ARTICLE AD BOX
Hendriansyah, Reinal Wahyu and Syaiful Anam, S.Si., M.T., Ph.D., (2024) Deteksi Penyakit Daun Manihot Esculenta dengan Metode EfficientNetB0. Sarjana thesis, Universitas Brawijaya.
Abstract
Penyakit daun pada tanaman Manihot Esculenta (singkong) merupakan ancaman serius yang dapat menyebabkan penurunan hasil panen dan kualitas tanaman. Penelitian ini mengembangkan sistem deteksi penyakit daun singkong secara otomatis menggunakan metode EfficientNetB0, sebuah arsitektur Convolutional Neural Network (CNN) yang dikenal karena efisiensi komputasinya dan kemampuannya untuk beroperasi pada dataset berskala besar. Dataset yang digunakan diperoleh dari platform Kaggle, berisi citra daun singkong yang diklasifikasikan ke dalam lima kelas: Cassava Bacterial Blight (CBB), Cassava Brown Streak Disease (CBSD), Cassava Green Mottle (CGM), Cassava Mosaic Disease (CMD), dan sehat healthy. Data diproses melalui teknik augmentasi untuk meningkatkan variasi sampel dan kemudian dibagi menjadi 80% data pelatihan dan 20% data validasi. Model dilatih selama 20 epoch dengan algoritma optimasi Adam, dan hasil evaluasi menunjukkan bahwa EfficientNetB0 mencapai akurasi sebesar 92.34%, lebih unggul dibandingkan model CNN dasar dan ResNet50 yang masing-masing mencatatkan akurasi 49.22% dan 68.85%. Selain itu, model ini mencapai presisi sebesar 92.29%, recall 92.34%, dan F1-score 92.3%. Keunggulan EfficientNetB0 dalam hal akurasi dan efisiensi komputasi menjadikannya metode yang sangat potensial untuk diterapkan dalam sistem pemantauan otomatis kesehatan tanaman, khususnya untuk deteksi dini penyakit daun singkong
English Abstract
Leaf diseases in Manihot Esculenta (cassava) plants pose a serious threat that can lead to reduced crop yields and lower plant quality. This research develops an automatic cassava leaf disease detection system using the EfficientNetB0 method, an architecture of Convolutional Neural Network (CNN) known for its computational efficiency and ability to operate on large-scale datasets. The dataset used was obtained from the Kaggle platform, consisting of cassava leaf images classified into five classes: Cassava Bacterial Blight (CBB), Cassava Brown Streak Disease (CBSD), Cassava Green Mottle (CGM), Cassava Mosaic Disease (CMD), and healthy. The data was processed using augmentation techniques to increase sample variation and then split into 80% training data and 20% validation data. The model was trained for 20 epochs using the Adam optimization algorithm, and the evaluation results showed that EfficientNetB0 achieved an accuracy of 92.34%, outperforming the basic CNN and ResNet50 models, which recorded accuracies of 49.22% and 68.85%, respectively. Additionally, the model achieved a precision of 92.29%, a recall of 92.34%, and an F1-score of 92.3%. EfficientNetB0’s advantages in terms of accuracy and computational efficiency make it a highly promising method for use in automatic plant health monitoring systems, particularly for early detection of cassava leaf diseases.
![]() |
Text (DALAM MASA EMBARGO)
Reinal Wahyu Hendriansyah.pdf Restricted to Registered users only Download (13MB) |
Actions (login required)
![]() |
View Item |